Bi	ology			Section - I
		Straight Objective	е Туре	
Bic (D)	logy contains 90 multiple choice que , out of which ONLY ONE is correct.	estions numbered 1 to 90). Each question has 4 cl	noices (A), (B), (C) and
1.	In which part of the alimentary cana (A) Stomach	l food is finally digested a (B) Mouth cavity	and absorbed? (C) Large intestine	(D) Small intestine
2.	In human males, the testes are pres (A) Process of mating (C) easy transfer of gametes	sent in the scrotum, beca	use it helps in the (B) formation of viable s (D) all the above	sperms
3.	The shape of guard cells changes of (A) Protein composition of cells (C) Amount of water in cells	lue to change in the	(B) Temperature of cell (D) Position of nucleus	s in the cells
4.	In human digestive system, the enz (A) Pancreas and liver (C) Pancreas and gall bladder	ymes pepsin and trypsin	are secreted respective (B) Stomach and saliva (D) Stomach and pancr	y by: ry glands eas
5.	lodine is necessary for the synthesis (A) Adrenaline	s of which hormone? (B) Thyroxin	(C) Auxin	(D) Insulin
6.	When air is blown from mouth into t presence of: (A) Oxygen	est-tube containing lime (B) carbon dioxide	water, the lime water turn (C) nitrogen	ns milky due to the (D) water vapour
7.	Posture and balance of the body is (A) Cerebrum	controlled by (B) cerebellum	(C) medulla	(D) pons
8.	The correct sequence of anaerobic (A) Glucose $\xrightarrow{\text{cytoplasm}}$ Pyruvate $\xrightarrow{\text{cytoplasm}}$ Pyruvate $\xrightarrow{\text{cytoplasm}}$ (C) Glucose $\xrightarrow{\text{cytoplasm}}$ Pyruvate $\xrightarrow{\text{cytoplasm}}$ (D) Glucose $\xrightarrow{\text{cytoplasm}}$ Pyruvate $\xrightarrow{\text{cytoplasm}}$	reactions in yeast is <u>mitochondria</u> →Ethanol + carbo <u>cytoplasm</u> →Lactic acid <u>cmitochondria</u> →Lactic acid <u>cytoplasm</u> →Ethanol + carbo	ondioxide ondioxide + Energy(less a	amount)
9.	Vegetative propagation refers to for (A) Stem, roots and flowers (C) Stem, flowers and fruits	mation of new plants fror	n (B) stem, roots and leav (D) stem, leaves and flo	ves owers

DNA 2019 C10T11 PAPER - 2 (BPC)

Page – 1

Section - I

Pag	je – 2		DNA 2019	C10T11 PAPER - 2 (BPC)
10.	One of the following is not a constitut (A) red blood cells	ient of blood. This one is (B) white blood cells	:: (C) sieve plates	(D) Platelets
11.	Dwarfism results due to (A) Excess secretion of thyroxin (C) Less secretion of adrenaline		(B) Less secretion of gr(D) Excess secretion of	owth hormone growth hormone
12.	Which of the following has the longe (A) Carnivore	est small intestine? (B) omnivore	(C) herbivore	(D) none of these
13.	The movement of shoot towards light (A) Geotropism	nt is (B) hydrotropism	(C) chemotropism	(D) phototropism
14.	The stimulus in the process of thigm (A) Touch	otropism is: (B) gravity	(C) light	(D) chemical
15.	The filtration units of kidneys are cal (A) Ureter	led (B) urethra	(C) neurons	(D) nephrons
16.	The site of Dark reaction of photosy (A) grana	nthesis is (B) stroma	(C) thylakoids	(D) Both (a) and (b)
17.	Chemicals which are released at the (A) Plasma	e synaptic junction are ca (B) Neurotransmitters	alled (C) Cerebrospinal fluid	(D) Lymph
18.	Wax gland present in the ear canal i (A) Sweat gland	s called (B) Prostate gland	(C) Cowper's gland	(D) Ceruminous gland
19.	Reproduction is essential for living c (A) Keep function of important organ (B) fulfill their energy requirement (C) Maintain growth (D) maintain continuity of the specie	organisms in order to ns s generation after gener	ation	
20.	The faulty functioning of an endocrir (A) Thyroid	ne gland can make a per (B) pineal	son very short or very ta (C) adrenal	ll. This gland is (D) pituitary
21.	Which is the first enzyme to mix with (A) Pepsin	n food in the digestive tra (B) cellulose	act? (C) amylase	(D) Trypsin
22.	Which of the following is an incorrec (A) Energy is essential for life proces (C) Movement of molecules does no	t statement? sses ot take place among cells	(B) organisms grow with s (D) organisms must rep	n time pair and maintain their body

Pag	je – 3		DNA 2019	C10T11 PAPER – 2 (BPC)
23.	The xausative agent of disease kala (A) Planaria	a <i>-azar</i> is caused by (B) Leech	(C) Leishmania	(D) Plasmodium
24.	The growth of pollen tubes towards (A) Hydrotropism	ovules is due to (B) chemotropism	(C) geotropism	(D) phototropism
25.	In a flower, the parts that produce r (A) Stamen and anther	nale and female gamete (B) filament and stigma	s (germ cells) are (C) anther and ovary	(D) stamen and style
26.	The anther contains: (A) Sepals	(B) ovules	(C) carpel	(D) pollen grains
27.	During respiration exchange of gase (A) Trachea and larynx	es take place in (B) alveoli of lungs	(C) alveoli and throat	(D) throat and larynx
28.	One of the following does not have a (A) red blood cell	a nucleus upon maturity. (B) white blood cell	(C) guard cell	(D) epidermal cell
29.	The sexually transmitted disease wh (A) Malaria	nich is caused by bacteri (B) diarrhea	a is: (C) gonorrhoea	(D) AIDS
30.	Junction between two neurons is ca (A) Cell junction (C) neural joint	lled	(B) neuro muscular juno (D) synapse	ction
31.	What prevents backflow of blood ins (A) Valves in heart (C) Thin walls of atria	side the heart during con	traction? (B) Thick muscular wall (D) all of the above	s of ventricles
32.	 A heterocrine gland is one which (A) Has two distinct parts (B) Serves a double function of exod (C) Produces two types of hormone (D) Occurs in two places 	crine and endocrine glan s	d	
33.	The substance that triggers the fall of (A) Auxin	of mature leaves and frui (B) gibberellins	ts from plants is due to (C) abscisic acid	(D) cytokinin
34.	Which of the following component o pancreatic juice?	f our food is digested by	an enzyme which is pres	sent in saliva as well as in
	(A) Proteins	(B) fat	(C) minerals	(D) carbohydrate
		<u> </u>		

-				
35.	In which of the following groups of o (A) Mushroom, green plants, amoeb (C) Paramecium, Amoeba, Cuscuta	rganism, food materials a	are broken down outside (B) Yeast, mushroom, b (D) Cuscuta, lice, tapew	the body and absorbed? pread mould vorm
36.	The correct sequence of organs in the correct sequence of organs in the constant of the correct sequence of organs in the correct sequence of	he male reproductive sys a eter	 stem for transport of spen (B) testis → bartholin's (D) testis → vasdeferen 	ms is gland \rightarrow urethra s \rightarrow ureter
37.	Lack of oxygen in muscles often lea	ads to cramps in the legs	s of sprinters. This is due	e to conversion of pyruvate
	to: (A) Ethanol	(B) carbon dioxide	(C) acetic acid	(D) lactic acid
38.	Select the mis-matched pair (A) Adrenaline (B) Testosterone (C) Estrogen (D) Thyroxin	: Pituitary gland : Testes : Ovary : Thyroid gland		
39.	Blood is pumped from the heart to the (A) Lungs	ne entire body by the: (B) ventricles	(C) atria	(D) nerves
40.	Oxygen liberated during photosynthe (A) Water	esis comes from (B) chlorophyll	(C) carbon dioxide	(D) glucose
41.	 I. Offspring formed as a result of sexual reproduction exhibit more variations because (A) Sexual reproduction is a lengthy process (B) Genetic material comes from two parents of the same species (C) Genetic material comes from two parents of different species (D) Genetic material comes from many parents 			
42.	Two of the following organisms have (A) Paramecium and Plasmodium (C) Parakeet and Amoeba	e a holozoic mode of nut	rition. These organisms a (B) Plasmodium and Pa (D) Paramecium and Le	are: Irakeet Sishmania
43.	The part of the Brain that has the pr (A) Cerebrum	eumotaxic centre is the (B) cerebellum	(C) pons varoli	(D) medulla
44.	Which part of alimentary canal store (A) Stomach	es excess of bile? (B) gall bladder	(C) Large intestine	(D) Oesophagus
45.	Descending Loop of Henle is meant (A) Potassium	for absorption of (B) Glucose	(C) Water	(D) CO ₂

Page - 4

Pag	ge – 5		DNA 2019	C10T11 PAPER - 2 (BPC)
46.	The releasing hormones are product (A) Testis	ed by (B) Pancreas	(C) Pituitary	(D)Hypothalamus
47.	The types of self pollination includes (A) Autogamy	G (B) Geitonogamy	(C) Cleistogamy	(D) All of these
48.	Which of the following equations is t (A) $6CO_2 + 12H_2O \rightarrow C_6H_{12}O_6 + 6O_6$ (B) $6CO_2 + H_2O + \text{Sunlight} \rightarrow C_6H_{12}$ (C) $6CO_2 + 12H_2O + \text{chlorophyll} + \text{su}$ (D) $6CO_2 + 12H_2O + \text{chlorophyll} + \text{su}$	the summary of photosyn $D_2 + 6H_2O$ $_2O_6 + O_2 + 6H_2O$ unlight $\rightarrow C_6H_{12}O_6 + 6O$ unlight $\rightarrow C_6H_{12}O_6 + 6O$	thesis? $_2 + 6H_2O$ $CO_2 + 6H_2O$	
49.	Characters transmitted from parents (A) Cell membrane	s to offspring are present (B) ribosome	in (C) Golgi bodies	(D) genes
50.	 Double fertilization is fusion of (A) Two eggs (B) Two eggs and polar nuclei (C) One male gamete with egg and (D) One male gamete with egg and 	other with synergid other with secondary nu	cleus	
51.	Dramatic changes of body features (A) Estrogen from testes and testos (B) Estrogen from adrenal gland and (C) Testosterone from testes and es (D) Testosterone from thyroid gland	associated with puberty terone from ovary d testosterone from pituit strogen from ovary and estrogen from pituit	are mainly because of se ary gland ary gland	ecretion of
52.	Which of the following is not a part of (A) Ovary	of the female reproductiv (B) Uterus	e system in human being (C) Vas deferens	gs? (D) Fallopian tube
53.	A stamen consists of two parts nam (A) Anther and style (C) Stigma and style	ely:	(B) Anther and filament (D) Filament and style	
54.	One of the following is a surgical r pregnancy does not occur. This met (A) IUCD	method in males which hod is (B) vasectomy	prevents the sperms fro (C) condom	om reaching the ovum and (D) tubectomy
55.	Macrophages are type of (A) RBCs	(B) Neurons	(C) WBCs	(D) Muscles

Pag	ge – 6		DNA 2019	C10T11 PAPER – 2 (BPC)
56.	The climbing organs of plants like te around the Support. This is an exam	endrils grow towards any nple of:	support which they happ	pen to touch and wind
	(A) Chemotropism	(B) nastic movement	(C) thigmotropism	(D) geotropism
57.	In a neuron, granules of rough endo protein synthesis are referred to as.	plasmic reticulum (RER)	with rosettes of free ribo	osomes, which carry out
	(A) Nodes of Ranvier	(B) Nissl's Bodies	(C) Myelin sheath	(D) axons
58.	In spirogyra, asexual reproduction ta (A) Fragmentation	akes places by (B) Binary fission	(C) Sporulation	(D) none of these
59.	The substance which is not reabsor (A) Glucose	bed by the nephron is ma (B) water	ainly (C) creatinine	(D) None of these
60.	Hormone inducing fruit ripening is (A) Ethylene	(B) Cytokinin	(C) Gibberellic acid	(D) Abscisic acid
61.	Epiglottis is meant for protecting (A) Oesophagus from entry of air (C) the windpipe and the lungs from	entry of food	(B) Nasal chambers fro (D) Teeth from caries	m entry of food
62.	During adolescence, several change	es occur in the human bo	ody. Mark one change as	sociated with sexual
	(A) Loss of libido	(B) Cracking of voice	(C) loss of limbs	(D) all of these
63.	In mammals, during inhalation & exl (A) Muscular wall of lungs (C) Diaphragm	nalation movements of lu	ings are governed by (B) Intercostal muscles (D) Diaphragm and inte	rcostal muscles
64.	The bending of the root of a plant as	way from a source of ligh	nt is caused by the action	of a phytohormone known
	(A) Cytokinin	(B) gibberellin	(C) abscisic acid	(D) auxin
65.	Erythropoietin is a hormone secrete (A) Native immunity (C) RBCs production in bone marror	d by kidney cells. It stimu w	ulates the (B) Blood clotting (D) Acquired immunity	

Pag	je – 7		DNA 2019	C10T11 PAPER - 2 (BPC)
66.	In a sexual reproduction, two off spr called:	ings having the same ge	netic material and the sa	ame body features are
	(A) Callus	(B) twins	(C) clones	(D) chromosomes
67.	Which of the following is not associa (A) Auxin	ated with growth of plant? (B) Gibberellins	? (C) Cytokinins	(D) Abscisic acid
68.	Dwarfness can be controlled by trea (A) Cytokinin	ting plants with (B) Gibberellic acid	(C) Auxin	(D) Anti – gibberellins
69.	The movement of sunflower in acco (A) Phototropism	rdance with the path of s (B) geotropism	sun is due to (C) chemotropism	(D) hydrotropism
70.	Branchial respiration is observed in (A) Fish	(B) Earthworm	(C) leech	(D) Man
71.	In human females, an event that refl (A) Growth of nails (C) change in eye colour	lects onset of reproductiv	ve phase is (B) changes in hair patt (D) menstruation	ern
72.	Most of the plant hormones promote (A) abscisic acid	e plant growth. A plant ho (B) Retinol	ormone which inhibits gro (C) ascorbic acid	owth is: (D) cytokinin
73.	The Energy currency of the cell is (A) Glycogen	(B) protein	(C) ATP	(D) fatty acid
74.	The conversion of a protein waste, a (A) Kidneys	ammonia into urea, occu (B) Lungs	rs in (C) Intestine	(D) Liver
75.	In humans, the life processes are co (A) Reproductive and endocrine sys (C) Endocrine and digestive system	ontrolled and regulated b tems s	y (B) respiratory and nerv (D) nervous and endoci	rous systems rine systems
76.	One of the following processes does (A) Fission	s not lead to the formatio (B) fertilization	n of clones. This is: (C) fragmentation	(D) tissue culture
77.	Choose the function of the pancreat (A) Trypsin digests proteins and lipa (B) trypsin digests emulsified fats an (C) Trypsin and lipase digest fats (D) trypsin digests proteins and lipas	ic juice from the following se digests carbohydrate ad lipase digests proteins se digests emulsified fate	g s s	

Pag	je – 8		DNA 2019	C10T11 PAPER - 2 (BPC)
78.	Leydig cells produce (A) Testosterone	(B) Thyroxine	(C) Parathhormone	(D) None of these
79.	A doctor advised a person to take a (A) His blood pressure was low (C) He was suffering from goitre	n injection of insulin beca	ause (B) his heart was beatir (D) his sugar level in bl	ng slowly ood was high
80.	Which vein brings clean blood from (A) Renal vein	the lungs into the heart? (B) pulmonary vein	(C) vena cava	(D) hepatic vein
81.	Chlorophyll in chloroplasts is located (A) Grana	d in (B) Oxysome	(C) Cristae	(D) Both (A) and (C)
82.	The procedure to remove waste produce aning the blood of a person by us (A) Ketolysis	ucts and excess fluid from sing a machine is known (B) hydrolysis	the blood when the kidne as: (C) dialysis	eys stop working properly by (D) photolysis
83.	Which of the following connects the (A) Pyruvic acid	glycolysis and Krebs' cy (B) Glucose	cle? (C) Acetyl Co-A	(D) ATP
84.	The hormone whose deficiency resu (A) Oestrogen	ults in Diabetes mellitus i (B) Vasopressin	s (C) insulin	(D) growth homone
85.	The type of dentition is a morpholog	gical arrangement in which	ch the base of the tooth	is completely enclosed in a
	(A) Acrodont	(B) Diphyodont	(C) Heterodont	(D) Thecodont
86.	The ability of a cell to divide into sev (A) Budding	veral cells during reprodu (B) reduction division	iction in plasmodium is c (C) fragmentation	called (D) multiple fission
87.	Thymosin is produced by (A) Anterior pituitary (C) Thymus	gland	(B) Posterior pituitary (D) Parathyroid	
88.	Fertilization in mammals occurs in (A) Uterus	(B) Fallopian tube	(C) Vagina	(D) Cervix
89.	The phloem tissue in plants is respo (A) Water	onsible for the transport on (B) water and minerals	of: (C) sugar	(D) all of the above
90.	Which of the following endocrine gla (A) Adrenal	ands produces emergend (B) Testes	cy hormones? (C) Pituitary	(D) Ovary
		Change for rough		

P	hysics			Section - II
		Straight Object	tive Type	
Ph ou	nysics contains 45 multiple choin t of which ONLY ONE is correc	ce questions numbered 1 t t.	o 45. Each question h	nas 4 choices (A), (B), (C) and (D),
1.	The masses of three wires ma respectively. The ratio of their	de of copper are in the rat electrical resistance is	io 1 : 3 : 5 and their le	engths are in ratio 5 : 3 : 1,
	(A) 125 : 5 : 3	(B) 25 : 9 : 1/5	(C) 125: 9 : 5	(D) 125 : 15 : 1
2.	The reading of ideal voltmeter below is:	connected across R in the	e circuit shown	I=.02A
	(A) 1 V (C) 3 V	(B) 2 V (D) 4 V		6V
				R
3.	In the below electrical circuit, voltmeter are: (both ammeter (A) 2 A, 10 V (C) 2 A, 16 V	the readings shown by the and voltmeter are ideal) (B) 3.2 A, 16 V (D) 3.2 A, 10 V	e ammeter and	$\begin{bmatrix} 5 & 3 \\ \hline & & \\ \hline & & \\ - & \\ + & \\ + & \\ + & \\ \end{bmatrix}$
				 (•) 16V
4.	If the resistance of a circuit, w the original resistance of circu	hich has a 12 v source, is i iit in Ω ?	increased by 4Ω , the	current drops by 0.5 A. What is
	(A) 4	(B) 8	(C) 16 (D) 3	2
5.	15 cells each of emf 2 volt are the combination	connected in series but 2	of them are connecte	d wrongly. Calculate the emf of
	(A) 30-volt	(B) 26-volt	(C) 22-volt	(D) 28 volt
6.	The resistivity of a wire (A) Increases with the length of (B) Decreases with the area of (C) Decreases with the length	of the wire f cross-section and increases with the cro	oss-section of wire	

Page - 9

DNA 2019 C10T11 PAPER - 2 (BPC)

Space for rough work

(D) None of the above statement is correct

Pag	ge – 10			DNA 2019 C10T11 PAPER - 2 (BPC)
7.	Electric bulb B ₁ (100W –250V) and e connected across source of 250 V a potential drop (approx) across electri (A) 200V (C) 98V	electric bulb B ₂ (100 W –2 is shown in figure what is ric bulb B ₂ ? (B) 250V (D) 48V	00V) are the	B1 (100 M B2) 250 V
8.	If the current through a resistor is ind temperature remains constant)	creased by 50%, the incre	ase in pow	ver dissipated will be (assume the
	(A) 225%	(B) 200%	(C) 250%	(D) 125%
9.	Graph shown V-I Characteristics of t & parallel combination. Identify the r (A) Resistance $1 = X_1$; Resistance 2 (B) Resistance $1 = X_2$; Resistance 2 (C) Resistance $1 = X_3$; Resistance 2 (D) Resistance $1 = X_4$; Resistance 2	two resistance their series resistances values & graph = X_2 ; Series = X_3 ; Paralle = X_3 ; Series = X_1 ; Paralle = X_2 ; Series = X_1 ; Paralle = X_1 ; Series = X_2 ; Paralle	combinati hs – $I = X_4$ $I = X_1$ $I = X_4$ $I = X_3$	on $X_4 X_3$ I X_2 V V
10.	In the circuit shown all the measuring	ng instrument are ideal. Th	ne	
	reading in ammeter A ₂ will be (A) 1/4A (C) <1/4 A	(B) 1A (D) Zero		5v
11.	In the given circuit, what is the equiv	alent resistance between	A and	2 2 2 AAAAAAAAAAA
	(A) 10 (C) 5	(B) 2 (D) 3		$B \xrightarrow{\qquad } 3 \\ B \xrightarrow{\qquad } 3 \\ B \xrightarrow{\qquad } 2 \\ B \xrightarrow{\qquad } 2 \\ B \xrightarrow{\qquad } 3 \\ C \xrightarrow{\qquad } 2 \\ C \xrightarrow{\qquad } 0 \\ C $

12. The electrical properties of copper and rubber are different because:

(A) The positive charges are free to move in copper but stationary in rubber.

(B) Many electrons are free to move in copper, but all electrons are bound to molecules in rubber.

(C) Positive charges are free to move in rubber but stationary in copper.

(D) Many electrons are free to move in rubber but stationary in copper.

13.	In the circuit shown, potential differe (A) + 4 V (C) -4.4 V	nce between A and B is: (B) -4 V (D) +4.4 V	AWM 4	$4V 6V$ $M \rightarrow - \bullet + MWM \rightarrow 12$
14	1kWh equal to: (A) 3.6× 10 ⁴ J	(B) 3.6× 10 ⁵ J	(C) 3.6× 10 ⁶ J	(D) 3.6× 10 ⁷ J
15	An electric Kettle consumes 1 kW of used for it.	f electric power when op	erated at 220 V. A fus	e wire of what rating must be
	(A) 1 A	(B) 2 A	(C) 5 A	(D) 4 A
16	When a charged particle in motion e (A) Speed changes (C) K.E. changes	nters in a uniform magne	etic field perpendicular (B) Velocity changes (D) Acceleration doe	ly then its s not change
17.	The radius of the path of a charged ((A) Charge of the particle (C) Energy of the particle	particle in a uniform mag	netic field is directly pr (B) Momentum of the (D) Intensity of field	oportional to: particle
18	Dynamo works on the principle of: (A) Heating effect of current (C) Chemical effect of current		(B) Electromagnetic in(D) Seebeck effect	nduction
19	A beam of alpha particles moving to	wards east is deflected to	owards south by magn	etic field. The direction of
	(A) towards south	(B) towards east	(C) downward	(D) upward
20.	A constant current I flows in a horiz West to East as shown in the figure. will be South to North	ontal wire in the plane o . The direction of magnet	f the paper from ic field at a point	N
	(A) directly above the wire(B) directly below the wire			WE
	(C) at a point located in the plane of (D) at a point located in the plane of	the paper, on the north s the paper, on the south	side of the wire. side of the wire.	
21.	Which of the following is true? I. A moving charge produces magne II. A moving charge experiences ford III. Magnetic field inside a solenoid is	tic field but no electric fie ce in magnetic field but n s uniform.	eld. ot in electric field.	
	(A) I and IV	(B) III and IV (C) I and III	(D) II and IV
			. <u>.</u>	

Page - 12			DNA 2019 C10T11 PAPER - 2 (BPC)
22. The S.I. unit of magnetic field inter (A) Weber	nsity is: (B) Tesla	(C) Oersted	(D) Gauss
23. Magnetic field due to current throu(A) circular loop of conducting wire(C) solenoid	gh ais simila e	r to magnetic field (B) rectangu (D) thick cop	d produced by a bar magnet. Ilar loop of conducting wire oper wire
24. The direction of the current in the closed for a long time:(A) Clockwise(C) No current	e conducting ring afte (B) Anti-Clockwise (D) Can't be predic	er the switch is	$\begin{array}{c c} \hline \\ \hline \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $
 25. Assertion(A): Motion of a charged speed. Reason (R): The magnetic force motion of the charged particles. (A) Both Assertion and Reason are (B) Both Assertion and Reason are (C) Assertion is a true statement, H (D) Both Assertion and Reason are 	d particle under the ac does not have any o e true, and the reason e true, but the reason out reason is false. e false statements	tion of a magnetic component either is the correct exp is not the correct	c field alone is always with constant along or opposite to the direction of planation of the assertion. explanation of the assertion.
26. An electron enters in a magnetic figure. The direction of force acting (A) to the left(C) out of the page	field at right angle to g on the electron will b (B) to the right (D) into the page	it as shown in be:	Magnetic field Electron
 27. A circular coil is entering a mag direction of induced current? (A) Clockwise (B) Anti-Clockwise (C) No induced current (D) Both clockwise and anti-clockwise 	gnetic field as showr vise	n. What is the	V V

28. The maximum attraction in a magnet is: (A) In the centre (B) On the sides

(C) On the poles

(D) On the surface

Paye – 15	$P_{2} = 0$
-----------	-------------

29. If a bar magnet is cut lengthwise into three parts, the total number of Poles will be: (A) 3 (B) 2 (C) 6 (D) 0

30. The strength of magnetic field inside a long current carrying straight solenoid is:

(A) Minimum in the middle(C) Same at all points

(B) More at the ends than at the centre

(D) Found to increase from one end to the other.

- 31. In a hydro-Power Plant
 - (A) Kinetic energy possessed by the stored water is converted into potential energy.
 - (B) Potential energy possessed by the stored water is converted into electricity.
 - (C) Water is converted into steam to produce electricity.
 - (D) Heat is extracted from water to produce electricity.
- 32. Ocean thermal energy is due to:
 - (A) Energy stored by waves in the ocean
 - (B) Pressure difference at different levels in the ocean.
 - (C) Tides arising out in the ocean.
 - (D) Temperature difference at different levels in the oceans.
- 33. Which of the following graphs shown the variation of magnetic induction B with distance r from a long wire carrying current

34. Dimensions of a block are $1 \text{ cm} \times 1 \text{ cm} \times 100 \text{ cm}$. If specific resistance of its material is $3 \times 10^{-7} \text{ ohm} - \text{m}$, then the resistance between the opposite rectangular faces is

(A)
$$3 \times 10^{-9}$$
 ohm (B) 3×10^{-7} ohm (C) 3×10^{-5} ohm (D) 3×10^{-3} ohm

- 35. When a magnetic field is applied in a direction perpendicular to the direction of cathode rays, then their
 - (A) Energy decreases (B) Energy increases
 - (C) Momentum increases (D) Magnitude of momentum and energy remain unchanged

36. Which is the important cor	nstituent (95%) of natural gas?		
(A) Methane	(B) Propane	(C) Ethane	(D) Chlorine

Page – 14		DNA 2019	C10T11 PAPER - 2 (BPC)
37. Equivalent resistance between the Ω) (A) $\frac{1}{5}$ (C) $2\frac{1}{3}$	e points A and B is (in (B) $1\frac{1}{4}$ (D) $3\frac{1}{2}$		
38. Which of the following is electromag(A) - ray	netic in nature? (B) - ray	(C) - ray	(D) Cathode ray
39. Which of the following isotopes of ur (A) U-234	anium is unstable? (B) U-235	(C) U-238 (D) All of the	ese
40. The renewable source of energy is: (A) Coal	(B) Uranium	(C) Natural gas	(D)Geothermal power
41. A helium nucleus makes a full rotati field B at the centre of the circle will	on in a circle of radius 0. be	.8 metre in two seconds.	The value of the magnetic
(A) $\frac{10^{-19}}{\mu_0}$	(B) 10 ⁻¹⁹ µ _o	(C) $2 \times 10^{-10} \mu_0$	(D) $\frac{2 \times 10^{-10}}{\mu_0}$
 42. During nuclear fission (A) Heat is transformed into energy (C) Weight is transformed into energy 	JY	(B) Radiation is transfor(D) Mass is transformed	rmed into energy d into energy
43. Atomic clock is based on the princip (A) Polonium atom	le of periodic vibration in (B) Uranium atom	the (C) Carbon atom	(D) Caesium atom
44. A star produces its energy through the (A) Nuclear fusion(C) Nuclear fission	he process of (B) Chemical reaction (D) Gravitational attract	ion between different pa	rts of the star
 45. Two very thin metallic wires placed as shown here. AB and CD are line O. The magnetic field will be zero of (A) AB (B) CD (C) Segment of OB only of line AB (D) Segment OC only of line CD 	I along X and Y-axis carr es of 45° with the axis wir on the line	ry equal currents th origin of axes at	$ \begin{array}{c} Y \\ B \\ i \\ A \\ D \end{array} $

DNA	2019	C10T11	PAPER	- 2 (BPC)
-----	------	--------	-------	-------	------

Chemistry

Straight Objective Type

Chemistry contains 45 multiple choice questions numbered 1 to 45. Each question has 4 choices (A), (B), (C) and (D), out of which **ONLY ONE** is correct.

1.	Which of the following is not a redox (A) $SO_3 + H_2O \rightarrow H_2SO_4$ (C) $Cl_2 + H_2O \rightarrow HCl + HOCl$	< reaction?	(B) $Zn + H_2SO_4 \rightarrow ZnSe_4$ (D) $H_2O_2 \rightarrow H_2 + O_2$	$O_4 + H_2(g)$	
2.	Burning of methane in oxygen is an (A) Endothermic reaction (C) Photo chemical reaction	example for	(B) exothermic reaction (D) neutralization		
3.	In electro-refining of metal the impu electrolysis of an aqueous solution of (A) Silver	re metal is made the ano of a complex metal salt. (B) Copper	de and a strip of pure mo Fhis method cannot be us (C) Aluminium	etal the cathode during the sed for refining of (D) Gold	
4.	4 KClO ₃ \rightarrow 3 KClO ₄ + KCl . This is an	example of read	ction.		
	(A) decomposition	(B) disproportionation	(C) displacement	(D) both a &b	
5.	Aqueous solution of FeCl ₃ (A) Turns blue litmus solution red (C) decolourises litmus solution		(B) turns red litmus solu (D) does not affect litmu	ition blue is solution	
6.	1 N Ⅲ∑N ³ ──H ,In this compound (N 2	exidation state of N^{1} , N^{2}	and N ^e are:		
	(A) 0, 0, 3	(B) 0, 0, -1	(C) 1, 1, -3	(D) -3, -3, -3	
7.	Concentration of $\begin{bmatrix} H^+ \end{bmatrix}$ will decrease (A) KCN	e on mixing which of the (B) NaCl	following salts with the s (C)NH ₄ Cl	olution of acetic acid (D) $Al_2 (SO_4)_3$	

Space for rough work

Page - 15

Section - III

Pag	ge – 16		DNA 2019	C10T11 PAPER - 2 (BPC)	
8.	During the process of electrolytic re There are:	fining of copper some m	etals present as impurity	settle as 'anode mud'.	
	(A) Fe and Ni	(B) Ag and Au	(C) Pb and Zn	(D) Sn and Ag	
9.	What will be the value of $K_W^{}$ at 90 $$	°C, if $\left[H^{+}\right]$ in pure water	is 10 ⁻⁶ gram ion/litre?		
	(A) 10 ⁻¹⁰	(B) 10 ⁻¹⁶	(C) 1×10 ⁻¹²	(D) 2×10^{-6}	
10.	Solution of which of the following w	ill have maximum pH val	ue?		
	(A) NaCl	(B) Na ₂ CO ₃	(C) NH ₄ Cl	(D) NaHCO ₃	
11.	The pH of a solution is 5.0. An acid	is added to it so that its	pH becomes 2.0. The [H	⁺] concentration of the	
	(A) 100 times	(B) 1000 times	(C) 2.5 times	(D) 10 times	
12.	The ignition powder used in Gold S	Schmidt's method is:			
	$(A) \operatorname{Na}_2 O_2 + AI$	(B) $Ba_2O_2 + Wg$	(\mathbf{C}) Na ₂ O ₂ + Mg	(D) AI + BeO	
13.	Red hot iron react with steam to giv (A) FeO only	e and hydro (B) Fe ₂ O ₃ only	ogen (C) Fe₃O₄	(D) None	
4.4			(-)3 - 4	(-)	
14.	(A) Acidic nature of H_2O_2 (C) Oxidising action of H_2O_2	reaction shows:	(B) Alkaline nature of H (D) Reducing action of	I ₂ O ₂ H ₂ O ₂	
15.	The weakest Bronsted base is:				
	(A) Br ⁻	$(B)NO_3^-$	(C) SO_4^{2-}	(D) CIO_4^-	
16.	BF ₃ is a:				
	(A) Lewis acid	(B) Lewis base	(C) Arrhenious acid	(D) None of these	
17.	Under the same conditions, which r	nixture by volume of one	molar potassium hydro	kide and one molar nitric	
	acid solution produces the highest t (A) 20 – 80	emperature (B) 25 – 75	(C) 50 – 50	(D) 75 - 25	
18.	18. Roasting process is not applied to which of the following ores?				
	(A) Galena	(B) Iron pyrites	(C) Copper glance	(D) Bauxite	
		• •			

Page – 17				
10. Conjugate base of HPO^{2-} is				

Conjug	jate base	of HPO ₄ ²⁻	is			
(A) PO	3– 4			$(B)H_2PO_4^-$	(C) H ₃ PO ₄	$(D) H_4 PO_3$
In whic (A) 2Fe (C) 2HI	th of the f $CI_2 + 2H_1 + H_2O_2 + H_$	following real CI + H ₂ O ₂ - \rightarrow 2H ₂ O + I ₂	actions ⊢ → 2FeCl ₃	I ₂ O ₂ is a reducing agen + 2H ₂ O	t (B) $Cl_2 + H_2O_2 \rightarrow 2HCl$ (D) $H_2SO_3 + H_2O_2 \rightarrow H_2O_2$	$+ O_2$ $H_2SO_4 + H_2O$
The va (A) 5	lue of n ii	n, MnO ₄ ⁻ + 8	3H⁺ + ne ⁻	Mn ²⁺ + 4H ₂ O is; (B) 3	(C) 4	(D) 2
Which (A) I ₂ <	of the foll HI < HIO	lowing trenc 4< ICI	l is corre	ct with respect to oxidati (B) HI < I ₂ < ICI < HIO ₄	on state of Iodine? (C) I ₂ < HIO ₄ < HI < ICI	(D) HI < ICI < I ₂ < HIO ₄
 3. Which of the following regarding H₂SO₅ and H₂S₂O₈ is correct? (A) The oxidation number, of S in both the compounds is +6 (B) H₂SO₅doesnot have peroxy linkage (C) Both the acids does not have peroxy linkage (D) Both the acids donot have peroxy linkage and oxidation number of S in H₂S₂O₈ is +7. 					s +7.	
H ₃ BO ₃ (A) Mo	isacio nobasic	t		(B) Dibasic	(C) Tribasic	(D) None
What is (A) 3 The an (A) P ₂ C	s the p ^H c hydride c D₅	of a solution of H ₃ PO ₄ is	containir	ng 0.0005 M Ba(OH) ₂ ? (B) 11 (B) P ₂ O ₃	(C) 5 (C) PO ₂	(D) 9 (D) None
Cryolite (A) Iror	e is an or า	e of		(B) Silver	(C) Zinc	(D) Aluminium
For the MnO_4^- the co (A) (B) (C)	e reaction + $C_2O_4^{2-}$ rrect coel Mn O_4^- 2 16 5 2	$+ H^+ → Mn$ fficients of th $C_2O_4^{2-}$ 5 5 16 16	²⁺ + CO ₂ he reacta H ⁺ 16 2 2 5	$_2 + H_2O$ ants for the balanced rea	iction are	
	Conjug (A) PO (A) PO (A) PO (A) 2Fe (C) 2HI The va (A) 5 Which (A) $I_2 <$ Which (A) The (B) H_2 S (C) Bot (D) Bot (D) Bot (D) Bot (D) Bot (D) Bot (C) Bot (D) Bot (A) The an (A) 7 Po (C) Sot (C) Bot (D) Bot (C) C) C (C) C) C (C)	Conjugate base (A) PO_4^{3-} In which of the f (A) $2FeCl_2 + 2H$ (C) $2HI + H_2O_2$ The value of n in (A) 5 Which of the fol (A) $I_2 < HI < HIO$ Which of the fol (A) $I_2 < HI < HIO$ Which of the fol (A) The oxidation (B) H_2SO_5 doesn (C) Both the aci (D) Both the aci (D) Both the aci (A) Monobasic What is the p ^H of (A) 3 The anhydride of (A) P_2O_5 Cryolite is an or (A) Iron For the reaction $MnO_4^- + C_2O_4^{2-}$ the correct coe MnO_4^- (A) 2 (B) 16 (C) 5 (D) 2	Conjugate base of HPO ₄ (A) PO ₄ ³⁻ In which of the following read (A) 2FeCl ₂ + 2HCl + H ₂ O ₂ - (C) 2Hl + H ₂ O ₂ \rightarrow 2H ₂ O + l ₂ The value of n in, MnO ₄ ⁻ + 8 (A) 5 Which of the following trend (A) l ₂ < HI < HIO ₄ < ICl Which of the following rega (A) The oxidation number, of (B) H ₂ SO ₅ doesnot have per (C) Both the acids does not (D) Both the acids does not (D) Both the acids donot had H ₃ BO ₃ isacid (A) Monobasic What is the p ^H of a solution (A) 3 The anhydride of H ₃ PO ₄ is (A) P ₂ O ₅ Cryolite is an ore of (A) Iron For the reaction MnO ₄ ⁻ C ₂ O ₄ ²⁻ + H ⁺ \rightarrow Mn the correct coefficients of th MnO ₄ ⁻ C ₂ O ₄ ²⁻ (A) 2 5 (B) 16 5 (C) 5 16 (D) 2 16	Conjugate base of HPO ₄ ⁻ is (A) PO ₄ ³⁻ In which of the following reactions H (A) 2FeCl ₂ + 2HCl + H ₂ O ₂ \rightarrow 2FeCl ₃ (C) 2Hl + H ₂ O ₂ \rightarrow 2H ₂ O + l ₂ The value of n in, MnO ₄ ⁻ + 8H ⁺ + ne ⁻ (A) 5 Which of the following trend is correr (A) l ₂ < HI < HIO ₄ < ICI Which of the following regarding H ₂ S (A) The oxidation number, of S in bC (B) H ₂ SO ₅ doesnot have peroxy linka (C) Both the acids does not have perox H ₃ BO ₃ isacid (A) Monobasic What is the p ^H of a solution containin (A) 3 The anhydride of H ₃ PO ₄ is (A) P ₂ O ₅ Cryolite is an ore of (A) Iron For the reaction MnO ₄ ⁻ + C ₂ O ₄ ²⁻ + H ⁺ \rightarrow Mn ²⁺ + CO ₂ the correct coefficients of the reacta MnO ₄ ⁻ C ₂ O ₄ ²⁻ H ⁺ (A) 2 5 16 (B) 16 5 2 (C) 5 16 2 (D) 2 16 5	Conjugate base of HPO ₄ is (A) PO ₄ ³ (B) H ₂ PO ₄ In which of the following reactions H ₂ O ₂ is a reducing agent (A) 2FeCl ₂ + 2HCl + H ₂ O ₂ \rightarrow 2FeCl ₃ + 2H ₂ O (C) 2Hl + H ₂ O ₂ \rightarrow 2H ₂ O + I ₂ The value of n in, MnO ₄ ⁻⁺ + 8H ⁺ + ne Mn ²⁺ + 4H ₂ O is; (A) 5 (B) 3 Which of the following trend is correct with respect to oxidati (A) I ₂ < HI < HIO ₄ < ICI (B) HI < I ₂ < ICI < HIO ₄ Which of the following regarding H ₂ SO ₅ and H ₂ S ₂ O ₈ is corre (A) The oxidation number, of S in both the compounds is +6 (B) H ₂ SO ₅ doesnot have peroxy linkage (C) Both the acids does not have peroxy linkage (D) Both the acids does not have peroxy linkage and oxidation H ₃ BO ₃ isacid (A) Monobasic (B) Dibasic What is the p ^H of a solution containing 0.0005 M Ba(OH) ₂ ? (A) 3 (B) 11 The anhydride of H ₃ PO ₄ is (A) P ₂ O ₅ (B) P ₂ O ₃ Cryolite is an ore of (A) Iron (B) Silver For the reaction MnO ₄ C ₂ O ₄ ² H ⁺ (A) 2 5 16 (B) 16 5 2 (C) 5 16 2 (D) 2 16 5	Conjugate base of HPO ₄

29.	. The reaction of an elements A with water produces combustible gas B and an aqueous solution of C. When another substance D reacts with this solution C also produces the same gas B. D also produces the same gas even on reaction with dilute H ₂ SO ₄ at room temperature. Elements A imparts golden yellow colour to Bunsen flame. Then, A, B, C, and D, may be identified as						
	Tame. Then, A, B, C and D may be I (A) Na H ₂ NaOH and Zn	identified as	(B) K H _a KOH and Zn				
	(C) K, H ₂ , NaOH and Zn		(D) Ca, H_2 , CaCOH ₂ and	d Zn			
30.	The 'milk of magnesia' used as an a	ntacid is chemically					
	$(A) Mg(OH)_2$	(B) MgO	(C) MgCl ₂	$(D)MgO + MgCl_2$			
31.	Fire extinguishers contain (A) conc. H_2SO_4 solution (C) NaHCO ₃ solution		(B) H ₂ SO ₄ and NaHCC (D) CaCO ₃ solution	0 ₃ solutions			
32.	aq. NaOH + P_4 (white) $\rightarrow PH_3 + X$;	compound X is					
	(A) NaH ₂ PO ₂	(B) NaHPO ₄	(C) Na ₂ CO ₃	(D) NaHCO ₃			
33.	Weakest base among KOH, NaOH,	$Ca(OH)_2$ and $Zn(OH)_2$	is				
	(A) $Ca(OH)_2$	(B) KOH	(C) NaOH	(D) $Zn(OH)_2$			
34.	Sodium metal is highly reactive and (A)toluene	cannot be stored under (B) kerosene oil	(C) alcohol	(D) benzene			
35.	Y $\leftarrow \frac{\Delta,205^{\circ}C}{\Delta}$ CaSO ₄ .2H ₂ O $\xrightarrow{\Delta,120^{\circ}C}$ (A) plaster of paris, dead burnt plast (C) CaO and plaster of pairs	$x \to X \cdot X$ and Y are response.	ectively (B) dead burnt plaster, _I (D) Plaster of pairs, mix	plaster of pairs ture of gases			
36.	In the extraction of copper from its s	ulphide ore the metal is	formed by the reduction	of Cu ₂ O with:			
	(A) FeS	(B) CO	(C) Cu ₂ S	(D) SO ₂			
37.	Mercury is purified by: (A) Passing through dilute HNO ₃	(B) Distillation	(C) distribution	(D) Vapour phase refining			

Page - 18

Page – 19	DNA 2019) C10T11 PAPER - 2 (BPC)	
38. In the alumino thermite process, Al (A) An oxidising agent	acts as (B) A flux	(C) A reducing agent	(D) A solder
39. Carnallite does not contain(A) K	(B) Ca	(C) Mg	(D) CI
40. Which one of the following is not a(A) gravity separation(C) electromagnetic separation	method of concentration	of ore? (B) froth floating proces (D) smelting	SS
41. Nitrogen show different oxidation s(A) 0 to + 5	tates in the range (B) – 3 to + 5	(C) – 5 to + 3	(D) – 3 to + 3
42. In a balanced equation $H_2SO_4 + x$ $HI \rightarrow H_2S + y$ $I_2 + z$ (A) x= 3, y = 5, z = 2	H_2O , the values of <i>x</i> , <i>y</i> , <i>z</i> (B) x = 4, y = 8, z = 5	z are (C) x = 8, y = 4, z = 4	(D) x = 5, y = 3, z = 4
43. The lightest metal is(A) Li	(B) Mg	(C) Ca	(D) Na
 44. The reaction of KMnO₄ and HCl reaction of Mn in KMnO₄ and (A) Oxidation of Mn in KMnO₄ and (B) Reduction of Mn in KMnO₄ and (C)Oxidation of Mn in KMnO₄ and (D) Reduction of Mn in KMnO₄ and 	esults in I production of Cl_2 d production of H_2 production of H_2 d production of Cl_2		
45. Which of the following is not a reduced(A) NaNO₂	icing agent (B) NaNO ₃	(C) HI	(D) SnCl ₂